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Environmental Chemicals Impacting the Thyroid:
Targets and Consequences

R. Thomas Zoeller

Thyroid hormone (TH) is essential for normal brain development, but the specific actions of TH differ across
developmental time and brain region. These actions of TH are mediated largely by a combination of thyroid
hormone receptor (TR) isoforms that exhibit specific temporal and spatial patterns of expression during animal
and human brain development. In addition, TR action is influenced by different cofactors, proteins that directly
link the TR protein to functional changes in gene expression. Considering the importance of TH signaling in
development, it is important to consider environmental chemicals that may interfere with this signaling. Recent
research indicates that environmental chemicals can interfere with thyroid function and with TH signaling. The
key issues are to understand the mechanism by which these chemicals act and the dose at which they act, and
whether adaptive responses intrinsic to the thyroid system can ameliorate potential adverse consequences (i.e.,
compensate). In addition, several recent studies show that TRs may be unintended targets of chemicals man-
ufactured for industrial purposes to which humans and wildlife are routinely exposed. Polychlorinated bi-
phenyls, polybrominated diphenyl ethers, bisphenol-A, and specific halogenated derivatives and metabolites of
these compounds have been shown to bind to TRs and perhaps have selective effects on TR functions. A number
of common chemicals, including polybrominated biphenyls and phthalates, may also exert such effects. When
we consider the importance of TH in brain development, it will be important to pursue the possibilities that these
chemicals—or interactions among chemical classes—are affecting children’s health by influencing TH signaling
in the developing brain.

Introduction

HYROID HORMONE (TH) 15 ESSENTIAL for normal brain

development in both humans and animals (1), but the
mechanisms by which TH exerts its actions are only partly
understood (2). Likewise, the influence of environmental
factors, such as iodine availability, is well recognized (3), but
our ability to identify environmental factors that exert direct
effects on TH action during brain development may be lim-
ited by the complexity of TH receptor (TR) function during
brain development and potential selective impacts of envi-
ronmental factors impacting TR function. The goal of this
review is to briefly place new information about the effects of
environmental contaminants on TR function within the con-
text of TH action during brain development (Fig. 1).

Mechanisms by Which Chemicals May
Interfere with Thyroid Function

All chemicals currently classified as thyroid toxicants have
been defined by their ability to reduce circulating levels of TH

(4). Thus, these chemicals alter the relationship between TH
biosynthesis and elimination, such that the steady-state levels
of hormones are reduced. The modes of action by which these
chemicals can influence circulating levels of TH are directed at
TH biosynthesis or at TH metabolism (Table 1).

Changes in Serum Hormone Levels

Changes in serum concentrations of THs [thyroxine (T4),
triiodothyronine (T3), and thyroid-stimulating hormone
(TSH)] can be caused by chemicals that inhibit TH synthesis,
release, and serum transport, and by chemicals that increase
metabolism of various THs [e.g., deiodinases, uridine di-
phosphate glucuronyltransferase (UDPGTs)]. If a chemical
decreases serum hormone concentrations, specific assays can
be used to determine the mechanism by which these hormone
concentrations are decreased. Moreover, the specific profile of
changes in hormone concentrations may be informative. For
example, mice carrying targeted deletions of type 2 deiodi-
nase have elevated circulating levels of both T4 and TSH with
no change in serum T3 (5). In contrast, mice carrying a targeted
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FIG.1. The current theory of thyroid hormone (TH) action
on the thyroid hormone receptor (TR) allows us to predict
sites at which environmental chemicals may interfere with
TH action. (1) Chemicals may bind to the TR and directly
activate or inhibit the action of endogenous T3. This action
may occur by influencing the interaction of TRs with various
cofactors such as N-CoR or SRC-1. (2) In addition, environ-
mental chemicals may cause the TR to exhibit a different
affinity for the TRE. (3) These effects may well be dependent
upon the specific TR isoform (TRx or TRf isoforms), the
specific TRE or contextual sequences of specific TREs, and/or
the specific cofactors available in the cell. It seems predict-
able that these chemicals will not produce patterns of effects
or disease that simply mimic TH insufficiency or excess, and
thus may easily be misinterpreted both in experimental an-
imals and in humans.

deletion of the type 1 deiodinase have elevated circulating
levels of T4 and reverse T3 (rT3), but no change in serum T3 or
TSH (6). Iodine deficiency can result in a reduction in serum
T4 with no change or even an increase in serum T3 (7). Che-
micals that inhibit thyroid peroxidase activity can produce
a “stereotypical” hormone profile with decreased levels of
serum T4 and T3 and an increase in serum TSH (8,9). Finally,
a targeted deletion of the T3 transporter MCT8 can pro-
duce elevated levels of T3 (10). Therefore, it is possible that
environmental factors interfering with the hypothalamic-
pituitary-thyroid (HPT) axis at specific points of regulation
may produce a hormonal profile that is indicative of the
mechanism of action.

The mechanisms by which environmental chemicals can
alter circulating levels of TH are many (4). Halogenated aryl
hydrocarbons can induce the expression of UDPGT enzymes
in the liver by activation of either the aryl hydrocarbon re-
ceptor (11) or Pregnane X receptor (PXR)/Constitutive An-
drostane receptor (CAR) (12,13). In addition, hydroxylated
compounds [e.g., polychlorinated biphenyls (PCBs)] can dis-
place T4 from the serum-binding protein transthyretin (14-16).
Thus, environmental contaminants may exert actions at a
number of sites of regulation to cause a reduction in circu-
lating levels of THs.

TaBLE 1. ExaMPLES OF CHEMICALS THAT CAN INTERFERE
WITH THE THYROID SYSTEM

Inhibit iodide uptake
Inhibit TPO activity
Inhibit deiodinase
Displace T4 from TTR
Activate liver UDPGTs

ClOy, ClO3, NO;, thiocyanate
PTU, methimazole, isoflavones
PCBs, iapanoic acid, thiouracils
Hydroxylated PCBs, PBDEs

AhR agonists, agonists
of PXR/CAR

Direct action on TR PCBs, PBDEs(?), BPA, triclosan
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Chemicals That Interfere with TRs: PCBs

Several authors speculated early that environmental che-
micals may act as imperfect TH analogs (17,18). Now, several
recent reports show that a broad range of chemicals to which
humans are routinely and inadvertently exposed can bind to
TRs and may produce complex effects on TH signaling. Per-
haps the best example is that of PCBs—industrial chemicals
consisting of paired phenyl rings with various degrees of
chlorination (19). Although the production of PCBs was
banned in the mid 1970s, these contaminants are routinely
detected in the environment (20) and in human tissues (21) at
high concentrations. Of particular concern is the observation
that PCBs become concentrated in fatty tissues such as brain.
For example, a recent study by Lackmann et al. (22) has found
that 6-week-old breast-fed infants had serum PCB levels of
1.19 ug/L, which was significantly higher than the 0.29 ug/L
found in serum of bottle-fed infants. Kalantzi et al. (23) re-
ported that in the United Kingdom, total PCB levels in breast
milk ranged from 26 to 530 ng/g lipid, translating to a daily
infant intake of 6.24-2067 ng/kg. Thus, when we consider the
importance of TH signaling in the neonate [e.g., (24-26)], the
relatively high exposure to PCBs during lactation suggests
that early postnatal development may be particularly vul-
nerable to thyroid disruption by PCBs.

Epidemiological studies have indicated that developmen-
tal exposure to PCBs is associated with neuropsychological
deficits, such as a lower full-scale IQ, reduced visual recog-
nition memory, attention deficits, and motor deficits (27-32).
Recently, Stewart et al. (33) have reported a negative asso-
ciation between PCB body burden and response inhibition in
3-year-old children, and a negative association between PCB
body burden and size of the corpus callosum (splenium). In
addition, the association between PCB body burden and
response inhibition was stronger in those children with the
smallest splenium. This association was retained at 9 years of
age (34). Several investigators have speculated that PCBs
may impact brain development by interfering with TH sig-
naling (35-37). This concept was derived, in part, from the
apparent structural similarity between PCBs and TH (17).
Several studies have shown that PCBs, or specific PCB con-
geners, in maternal and cord blood, are associated with
lower TH levels in both the mother and infant (38,39). For
example, Wang et al. (40) have recently shown that PCB
levels in cord blood are negatively associated with free T4
and with the product of free T4xTSH (as a measure of im-
pacts on the negative feedback system).

Although several studies have failed to identify an associ-
ation between PCB body burden and thyroid function (41-45),
experimental studies uniformly find that PCB exposure de-
creases circulating levels of T4 in rats (46—48), and some au-
thors propose that PCBs exert neurotoxic effects on the
developing brain by causing a state of relative hypothyroid-
ism (49-51). This concept is supported by the experimental
observations that the ototoxic effect of PCB exposure can be
partially ameliorated by T4 replacement (52); that the cere-
bellum, a tissue highly sensitive to TH insufficiency (53-55), is
targeted by PCB exposure; and that the effect of PCBs on
ovarian development can be partially ameliorated by T4 ad-
ministration (56). PCB exposure also alters motor behavior
associated with cerebellar function (57,58), as well as cere-
bellar anatomy (58). Interestingly, PCB exposure is associated
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with an increase in expression of glial fibrillary acidic protein
(58), which is also increased by TH insufficiency (59).

However, experimental studies do not provide uniform
support for the hypothesis that PCB exposure injures brain
development by causing a relative state of TH insufficiency.
For example, PCB exposure causes a severe reduction in
circulating levels of T4, but PCB-exposed pups do not exhibit
reduced body weight or body weight gain (60-62); they ex-
hibit elevated levels of expression of several TH-responsive
genes in the brain (60,63), and they do not exhibit elevated
serum TSH levels (64). These observations are consistent
with the hypothesis that at least some individual PCB con-
geners, or their metabolites, can act as TR agonists (or pos-
sibly antagonists) in vivo. Recently, Kitamura et al. (65) have
reported that nine separate hydroxylated PCB congeners can
bind to the rat TR with a “half-maximal binding” as low as
5 uM. In addition, using a human neuroprogenitor cell line,
Fritsche et al. (66) found that a specific PCB congener could
mimic the ability of T3 to enhance oligodendrocyte differ-
entiation and that this effect was blocked by the selective TR
antagonist NH3. Finally, Arulmozhiraja and Morita (67) have
identified several PCB congeners that exhibit weak TH ac-
tivity in an yeast-two hybrid assay optimized to identify such
activity.

Not all reports indicate that PCBs act as agonists on the TR.
Kimura-Kuroda et al. (68) reported that two separate hy-
droxylated PCBs interfere with T3-dependent neurite out-
growth in mouse cerebellar granule cell primary cultures. In
addition, Bogazzi ef al. (69) found that a commercial mixture
of PCBs (Aroclor 1254) exhibited specific binding to the rat
TR at approximately 10 uM. This concentration inhibited TR
action on the malic enzyme promoter in a chloramphenicol
acetyl transferase (CAT) assay, and this effect required an
intact thyroid hormone response element (TRE). However,
the PCB mixture did not alter the ability of TR to bind to the
malic enzyme TRE in a gel shift assay. In contrast, Iwasaki et al.
(70) found that a specific hydroxylated PCB congener inhibits
TR-mediated transcriptional activation in a luciferase assay
at concentrations as low as 10~ '° M. This effect was observed
in several cell lines, but was not observed using a glucocorti-
coid response element. Miyazaki et al. (71) followed this report
by showing that PCBs can dissociate TR:RXR heterodimers
from a TRE. Thus, some PCB congeners may be agonists, while
others are antagonists. Or perhaps more likely, individual
PCB congeners may be mixed agonists/antagonists—their
specific actions depending on the conditions of the assay used
to study it.

Bisphenol-A

Bisphenol-A (BPA, 4,4'-isopropylidenediphenol) is pro-
duced at a rate of over 800 million kg annually in the United
States alone (72), and is used primarily in the manufacture of
plastics, including polycarbonate plastics, epoxy resins that
coat food cans, and in dental sealants (73,74). Howe et al. (73)
estimated human consumption of BPA from epoxy-lined food
cans alone to be about 6.6 ug/(person day). BPA has been
reported in concentrations of 1-10ng/mL in serum of preg-
nant women, in the amniotic fluid of their fetus, and in cord
serum taken at birth (75,76). Moreover, BPA concentrations of
up to 100ng/g were reported in placenta (75). BPA is also
halogenated (brominated or chlorinated) to produce flame
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retardants. Tetrabromobisphenol-A (TBBPA) is the most com-
monly used, with over 60,000 tons produced annually (77,78).
Thomsen et al. (79) have recently reported that brominated
flame retardants, including TBBPA, increased in human se-
rum from 1977 to 1999 with concentrations in adults ranging
from 0.4 to 3.3ng/g serum lipids. However, infants (0—4
years) exhibited serum concentrations that ranged from 1.6 to
3.5 times higher (79).

When we consider this pattern of human exposure, it is
potentially important that BPA has been shown to bind to the
TR (80). Best characterized as a weak estrogen (81), binding to
the estrogen receptor with a K; of approximately 107°M
(82,83), BPA binds to and antagonizes T3 activation of the TR
(84,85) with a K; of approximately 10*M, but as little as
10"°M BPA significantly inhibits TR-mediated gene activa-
tion (85). Moreover, Moriyama et al. (80) found that BPA re-
duced T3-mediated gene expression in culture by enhancing
the interaction with the corepressor N-CoR. Interestingly, we
have found that developmental exposure to BPA in rats pro-
duces an endocrine profile similar to that observed in thyroid
resistance syndrome (86). Specifically, T4 levels were elevated
during development in the pups of BPA-treated animals, but
TSH levels were not different from controls (87). This profile
is consistent with BPA inhibition of TRf-mediated nega-
tive feedback. However, the TH-response gene RC3 was ele-
vated in the dentate gyrus of these BPA-treated animals (87).
Because the TRo isoform is expressed in the dentate gyrus,
we concluded that BPA may be a selective TR antagonist
in vivo.

If BPA acts as a TR antagonist in vivo, it is predictable that
specific developmental events and behaviors would be af-
fected by developmental exposure to BPA. In this regard,
Seiwa et al. (88) have shown that BPA blocks T3-induced
oligodendrocyte development from precursor cells (OPCs).
In addition, there may be an association between the thyroid
resistance syndrome and attention-deficit hyperactivity dis-
order (ADHD) in humans (89-91) and in rats (89); therefore,
it is potentially important that BPA-exposed rats exhibit
ADHD-like symptoms (92). In addition, BPA exposure alters
neocortical histogenesis in the mouse (93). Although no
specific link was made to TH action in this study, it is pos-
sible that BPA alters early development of the cortex by in-
terfering with TH signaling.

Despite the antagonistic effects of BPA on the TRf, halo-
genated BPAs appear to act as TR agonists (84). Both TBBPA
and tetrachlorobisphenol A can bind to the TR and induce
GH3 cell proliferation and growth hormone production (84).
Thus, these compounds may exert agonistic effects on the TR
and this could be important during early brain development.
For example, TH of maternal origin can regulate gene ex-
pression in the fetal brain (94-96); one of these genes codes for
Hes1 (63). Considering the role of HES proteins in fate spec-
ification in the early cortex (97-99), the observation that in-
dustrial chemicals can activate the TR and increase HES
expression (63) may indicate that these chemicals can exert
subtle effects on early differentiative events.

Emerging chemicals

Polybrominated diphenyl ethers (PBDEs) are used as
flame retardants and are becoming common contaminants in
human tissues (100-104). A few studies have focused on their
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ability to influence thyroid function (105-109), but this has
not included an evaluation of their ability to interact directly
with the TR. Another common compound with a structure
similar to PBDEs, triclosan, has also been shown to interfere
directly with TR function in frog metamorphosis (110). Tri-
closan is a hydroxylated, polychloro-diphenyl ether used as
an antibacterial agent in hand soaps and creams, and has
been identified as a contaminant in human blood (111).

Conclusion

The human population is exposed to a large number of
specific polyhalogenated aromatic hydrocarbons, and bio-
monitoring studies now detect these chemicals in adults,
children, pregnant women, and in the fetal compartment (112).
Increasing numbers of reports are revealing that a broad array
of compounds can bind to the TR and affect TH-regulated gene
expression, both in vivo and in vitro. However, considering the
tremendously pleiotropic effects of TH, it is predictable that
these synthetic compounds may have very complex effects on
the TR. In addition, these studies suggest that chemicals may
interact with other important TH-binding proteins, such as
deiodinase enzymes, which appear to control the sensitivity of
different brain regions to TH exposure during development
(113). Therefore, if exogenous chemicals alter the activity of
these enzymes, it may influence the sequence of TH-sensitive
developmental events. Likewise, specific transporters appear
to control the availability of T3 to cells in the brain (114,115);
thus, if environmental chemicals interfere with tissue uptake
of TH, adverse human health effects could result. Our ability to
identify chemical effects on TR function in vitro far exceeds our
ability to identify chemical effects on TR function in vivo, in
part because the mechanisms of TH action in the developing
brain are less well understood. However, it will be important
to define the role of TH in brain development and to identify
the mechanisms by which TH exerts these actions if we are to
understand the potential human health effects of persistent
exposure to these bioaccumulative compounds.
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